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NOMENCLATURE 

Fourier coefficients; 
heat capacity per unit volume ; 
enthalpy ; 
conductivity; 
latent heat of freezing; 
reference of mesh point undergoing transition ; 
time ; 
time measured from the moment point m becomes 
zero ; 
temperature ; 
depth from ground surface; 
depth of frost. 

Greek symbols 

At, time increment; 

Ax, space increment ; 
4 thermal diffusivity. 

Subscripts 

f, 
4 

frozen region ; 
unfrozen region. 

INTRODUCTION 

THE ENTHALPY method [l] is a simple and flexible technique 
for solving heat transfer problems involving either melting or 
freezing. Instead of working entirely in terms of the tempera- 
ture of a material, an enthalpy function is defined which 
represents the total heat content per unit mass of the material. 
The advantage of such a reformulation is that the necessity to 
carefully track the location of the solid-liquid interface is 
removed and standard numerical techniques can be em- 
ployed. For problems in which the thermal properties differ 
between the solid and liquid states the mesh point undergoing 
transition needs to be monitored. However, this is a trivial 
computational task compared with the otherwise time con- 
suming chore of catering for different numerical approxi- 
mations at each of the points adjacent to the interface. 

Voller er al. [2] applied the enthalpy method to a test 
problem posed by Goodrich [3] and found that, although the 
predicted temperature distributions were reasonable, the 
predicted time history of a typical point was far from 
acceptable. The predicted temperature of a point displayed a 
pronounced step-like behaviour. They suggest a possible 
cause for this phenomenon and in a more recent paper [4] 
propose a procedure for rectifying the situation. 

The purpose of this short communication is to explain the 
reason for the unusual behaviour of the numerical solution 
and why it is so exaggerated for Goodrich’s test problem. 
This, in its turn, provides a justification for the remedial 
procedure proposed by Voller and colleagues. However, the 
degree of success they report will not necessarily be repeateti 
when tackling other problems. 

GOODRICH’S TEST PROBLEM 

Consider the problem of the freezing of the ground, initially 
at 2”C, as a result of an instantaneous drop in surface 
temperature to - 10°C. The conductivity, K, latent heat per 
unit volume, L, and heat capacity per unit volume, C, are 
taken as: K, = 2.25 W/m”C; C, = 1.5 MJ/m3 “C; K, = 1.75 
W/m”C; C, = 2.5 MJ/m3 “C; L = 100 MJ/m3, where the 
subscripts denote the values in the frozen and unfrozen 
regions, respectively. The ground freezes at zero temperature 
and it is assumed that no volumetric change takes place. 
Within each region the usual heat conduction equation 
holds and at the interface, x,,(t), between frozen and unfrozen 
ground the thermal balance 

is maintained. 

The equivalent enthalpy formulation is to consider the 
equation 

for all x z 0 where the enthalpy H and temperature T have 
the relationship 

T=(H-L)/C,, H>L; 

T=O, OsH<L; (2) 

T = H/C,, H < 0. 

Replacing equation (1) by an explicity finite-difference ap- 
proximation on a grid of size Ax = 0.01 m and At = 30 s, a 
numerical solution was computed from an initial temperature 
distribution corresponding to the exact solution [5] with t = 
7 h. This starting condition was chosen to give a reasonable 
number of mesh points (i.e. 10) in the frozen phase initially, 
which avoids unnecessary numerical error. The numerical 
solution was allowed to progress until time t = 27 h. 

Two aspects of the numerical solution are presented in 
Figs. 1 and 2. Figure 1 illustrates the predicted temperature 
distribution after 27 h and it is a fair guide to the actual 
temperature distribution (given in [S]). In Fig. 2 the tempera- 
ture at a depth of 0.15 m is recorded. The step-like behaviour 
of the temperature is apparent. A carefully drawn graph also 
indicates that this phenomenon is not just confined to points 
in the frozen region. The existence of “steps” in the tempera- 
ture history when unfrozen can be easily demonstrated with 
the aid of a difference table. However, for this example, the 
uneven fall in temperature in the unfrozen region is less 
dramatic. 

A further scrutiny of the time history of the point 0.15 m 
reveals a number of interesting features. Firstly, the depth of 
each step reflects the size of the temperature gradient, which 
partly explains the different scale of effect in each region. 
However, a more fascinating observation is made when the 
length of each step is measured. The number of increments in 
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FIG. 1. Temperature distribution at r = 27 h 

Table 1 

Precise time taken 
Approx. length Interval to freeze interval 

Step (no. of At’s) (m) (no. of At’s) 

0 257 [0.145, 0.1551 257.6 
A 275 [0.155, 0.1651 274.8 
B 293 [0.165, 0.1751 292.0 
C 310 r0.175, 1.851 309.2 

AC between consecutive jumps in temperature, indicated by 
the letters 0, A, B and C in Fig. 2, are tabulated in Table 1. 
The precise time taken for frost to penetrate a distance AX can 
be obtained from 

x,(t) = 0.508691(~, t)’ ‘, (3) 

which is derived from the solution given by Carslaw and 
Jaeger [5]. The time, in terms of number of increments, that it 
takes to freeze successive Ax’s of ground are also presented in 
Table 1. The close agreement between the step lengths and 
these times is remarkable. 

Clearly, the temperature distribution throughout the me- 
dium remains static as the moving interface remains in the 
locality of a particular mesh point. A change in temperature 
only occurs when the interface moves from the locality of one 

mesh point to the next. Why does the numerical solution 
perform so well in some respects and so poorly in others? A 
review of Fig. 1 provides the answer. The temperature 
distribution in the frozen phase is effectively linear. To some 
extent this can also be= said of the unfrozen region, However, 
for the moment consider the frozen region. The freezing is 
taking place very slowly compared to the time scale in which 
conduction is significant, The temperature within the frozen 
phase is quasi-steady. The numerical solution reflects this 
process very accurately. 

Suppose the interval [(m - $)8x, (m + 4)A.x) is undergoing 
transition from liquid to solid, the enthalpy at the point mAx 
lies in the interval (0, L) and the temperature at mA.x is taken 
to be zero. For the period of transition the process within 
[O, mAx] may be thought of as a separate boundary value 
problem and the numerical solution at the points within this 
range will mimic the behaviour of the expression 

A, sin zexp( -nZrr%,t’/m”Ax*}, 

(4) 

where t’is measured from the moment the temperature at x = 
mAx becomes zero. It may easily be confirmed that the 
transient effects are indeed shortlived. The intervals over 
which transient conduction is significant correspond to the 
regions of rapid temperature change in Fig. 2. It is also 
informative to assess the magnitude of the exponent in 

Fro. 2. Time history of the depth 15 cm. 
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expression (4) for the period of transition. From equation (3) 
the transition period is 

2rn(A.~)~~(~~ x 0.258767) seconds 

and the exponent of the dominant transient term becomes 

- 2n=/(nz x 0.258767). (5) 

As m increases, the above expression decreases and the time 
scale of the transient effects increases in comparison to the 
transition time. This too is portrayed by the numerical 
solution presented in Fig. 2. Although successive steps get 
longer, the periods of steady temperature get shorter. 

In conclusion, the numerical solution, in its own way, gives 
a very accurate description of the melting process. The 
undesirable step-like behaviour produced by the enthalpy 
approach is merely a consequence of the quasi-steady nature 
of the temperature distribution. 

In the unfrozen region a similar argument may be applied. 
The effect is considerably less dramatic as the form to which 
the solution tends during a transition period is itself non- 
steady (e.g. - 2 erc(x - ~~Ax)/~(KJ’)‘~~]). It is only at mesh 
points soon to be frozen that any unevenness in the tempera- 
ture fall is easily observed. 

FINAL REMARKS 

The behaviour described here will only occur when the heat 
capacity in the frozen region is very much less than the latent 
heat of freezing. However, this is frequently the case in 
industrial processes. 

To overcome the uneven temperature fall Voller er al. [4] 
recommend a scheme in which linear interpolation is used to 
find the time at which the solid-liquid interfae is at a mesh 
point. By using implicit finite-difference approximations they 
can allow the interface to move from one mesh point to the next 
in each time increment. For a time history of a point close to 
the surface this is ideal. As a consequence of (5) transient 
conduction is insignificant for a considerable period. The 
temperature profile in the frozen ground jumps from one 
equilibrium to the next and within each transition period the 
enthalpy at the transition point, (mbx), changes at an 
approximately constant rate. Linear interpolation is sufficient 
to determine the time at which the enthalpy takes the value 

L/2. When a point much further from ground level becomes 
frozen the time increments will be large and transient 
conduction will be more si~ificant. This remedial scheme 
may be less successful. 

The intr~uction of a small freezing range about 0°C 
appears an obvious alternative approach. The tem~rature at 
the transition point can then drift downwards during tran- 
sition and prevent an equilibrium state being reached. 
However, Voller et al. [2] report little success with such 
techniques. There is scope for further research in this area. 

Finally, it is worth noting that the numerical solution is 
sensitive to the initial enthalpy distribution. If the initial 
temperature is the sole criterion for determining the initial 
enthalpy, the solution will develop out of phase with the 
description presented here. All results presented in this short 
communication were based on an initial enthalpy distri- 
bution in which the enthalpy at the initial transition point was 
related to the known location of the solid-liquid interface 
in the manner described by Crank [6]. 
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